JOM 23689

Mono- und Di-t-butylcyclopentadienyl-Carbonyl-Komplexe des Mangans, Eisens, Cobalts und Rhodiums—Die Kristallstrukturen von $[Cp^{x}Fe(CO)_{2}]_{2}$ $(Cp^{x} = \eta^{5}-C_{5}H_{3}({}^{t}Bu)R-1,3; R = H, {}^{t}Bu)$

M. Scheer, K. Schuster, U. Becker, A. Krug und H. Hartung

Fachbereich Chemie der Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 16, O-4020 Halle / S. (Deutschland) (Eingegangen den 9. März 1993)

Abstract

The X-ray structure of $[Cp'Fe(CO)_2]_2$ $(Cp' = \eta^5 \cdot C_5H_4^{t}Bu)$ reveals a dinuclear complex with a metal-metal single bond and a *trans* arrangement of the Cp' ligands, whereas $[Cp''Fe(CO)_2]_2$ $(Cp'' = \eta^5 \cdot C_5H_3^{t}Bu_2)$ is a dimer with a *cis* configuration of the Cp'' groups. The synthesis and spectroscopic characterisation (NMR, IR) of other metal carbonyls of the type $[Cp^*M(CO)_n]$ $(Cp^* = Cp', Cp''; M = Mn, n = 3; M = Co, Rh, n = 2)$ and $[Cp''Co(\mu - CO)]_2$ are discussed.

Zusammenfassung

Die Kristallstrukturanalyse weist $[Cp'Fe(CO)_2]_2 (Cp' = \eta^5 \cdot C_5H_4^tBu)$ als Zweikernkomplex mit einer (Metall-Metall)-Einfachbindung und einer *trans*-Anordnung der Cp'-Liganden aus. Demgegenüber ist $[Cp''Fe(CO)_2]_2 (Cp'' = \eta^5 \cdot C_5H_3^tBu_2)$ ein Zweikernkomplex mit *cis*-Konfiguration der Cp''-Gruppen. Die Synthese und die spektroskopische Charakterisierung (NMR, IR) von weiteren Cp^x-haltigen Metallcarbonylen der Typen $[Cp^xM(CO)_n] (Cp^x = Cp', Cp''; M = Mn, n = 3; M = Co, Rh, n = 2)$ und $[Cp''Co(\mu-CO)]_2$ werden diskutiert.

1. Einleitung

Substituierte Cyclopentadienyl-Carbonyl-Komplexe sind begehrte Startverbindungen in der Organometallchemie [1]. Verbindungen des Typs $[Cp^{x}M(CO)_{2}]_{2}$ (M = Fe, Ru; $Cp^{x} = \eta^{5} \cdot C_{5}H_{5}$ (Cp) bzw. substituiertes Cp) können die *trans*-Anordnung I oder die *cis*-Anordnung II der Cp^x-Liganden aufweisen. Darüberhinaus sind die durch CO unverbrückten Strukturen von I und II möglich und in Lösung als Übergänge im scrambling-Prozeß nachgewiesen [2,3].

Correspondence to: Dr. M. Scheer, Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.

I

körperstruktur ausschließlich die *trans*-Konformation I gefunden. Auch das Fe-Analogon $[Cp^*Fe(CO)_2]_2$ liegt als *trans*-Isomer I vor [7]. Hingegen kristallisiert $[CpFe(CO)_2]_2$ sowohl als *trans*- [8] wie auch bei tiefen Temperaturen als *cis*-Isomer [9].

Π

Abb. 1. Molekülstruktur von $[Cp'Fe(\mu-CO)CO]_2$ (1). (Mit ' versehene Atomsymbole beziehen sich auf die C_i -Symmetrie des Moleküls.)

Kürzlich konnten wir über die Synthese zweikerniger Verbindungen der Typs $[Cp^{x}M(CO)_{n}]_{2}$ $(Cp^{x} = Cp', Cp''; Cp' = \eta^{5} \cdot C_{5}H_{4}$ 'Bu, $Cp'' = \eta^{5} \cdot C_{5}H_{3}$ ('Bu)₂; M = Mo, n = 2, 3; M = Fe, n = 2) berichten [10]. In diesem Zusammenhang stellte sich die Frage nach den Festkörperstrukturen der Eisen-Derivate $[Cp^{x}Fe(CO)_{2}]_{2}$ $(Cp^{x} = Cp', Cp'')$, die im folgenden diskutiert wird. Ebenfalls wird im folgenden die Darstellung ein- und zweikerniger mono- und di-t-Butyl-substituierter Cyclopentadienyl-Komplexe verschiedener Übergangsmetalle beschrieben, die nützliche Edukte z.B. zur Darstellung neuer Koordinationsverbindungen mit "nackten" E_x-Liganden sind [11].

2. Ergebnisse und Diskussion

Die Komplexe $[Cp^{x}Fe(CO)_{2}]_{2}$ $(Cp^{x} = Cp' (1), Cp''$ (2)) werden über die Cothermolyse von $Fe(CO)_{5}$ mit $Cp^{x}H$ synthetisiert [10]. Unter ganz ähnlichen Bedingungen (Kristallisation bei 5°C aus gesättigten n-Hexan-Lösungen) wurden für die Strukturanalyse geeignete Kristalle erhalten. $[Cp''Fe(CO)_{2}]_{2}$ kristallisiert

Abb. 2. Molekülstruktur von $[Cp''Fe(\mu-CO)CO]_2$ (20. (Mit ' versehene Atomsymbole beziehen sich auf die C_2 -Symmetrie des Moleküls.)

TABELLE 1. Ausgewählte Bindungslängen (pm) und -winkel (°) von $[Cp'Fe(\mu-CO)CO]_2$ (1) und $[Cp''Fe(\mu-CO)CO]_2$ (2)

	1	2		1	2
Fe-Fe'	255.0(1)	255.7(1)	C1-Fe-C2	92.84(8)	87.9(2)
Fe–C1	176.2(2)	173.7(4)	C1-Fe-C2'	93.16(8)	90.5(2)
Fe-C2	192.8(2)	192.1(4)	C1-Fe-Z ^a	126.35(7)	124.4(1)
FeC2'	193.4(2)	193.1(4)	C2-Fe-C2'	97.36(8)	94.3(2)
Fe-C3	214.1(2)	215.6(3)	C2-Fe-Z ^a	119.75(6)	126.6(1)
FeC4	211.8(2)	210.0(3)	C2'-Fe-Z ^a	120.13(6)	122.8(1)
Fe-C5	213.5(2)	215.2(3)	Fe-C2-Fe'	82.64(8)	83.2(2)
Fe-C6	212.9(2)	214.4(3)	Fe-C2-O2	138.9(1)	139.4(3)
Fe-C7	214.0(2)	213.1(3)	Fe'-C2-O2	138.4(1)	137.4(3)
Fe-Z ^a	175.8(1)	176.1(1)	Fe-C1-O1	178.6(1)	176.6(3)
C1-01	114.0(2)	115.0(5)			
C2-O2	117.3(2)	117.7(5)			

^a Z = geometrisches Zentrum von Cp.

als *trans*-Komplex I (Abb. 1), während $[Cp''Fe(CO)_2]_2$ ein *cis*-Derivat des Typs II (Abb. 2) darstellt.

In den Tabellen 1, 2 und 3 sind ausgewählte Bindungslängen und -winkel, sowie die Atomkoordinaten der Verbindungen 1 und 2 wiedergegeben. Die (FeFe)-Abstände repräsentieren mit 255.0(1) bzw. 255.7(1) pm Einfachbindungen. Sie entsprechen damit dem (FeFe)-Abstand der durch CO-verbrückten Bindung im Fe₃(CO)₉ (255.8(1) pm) [12] und sind etwas länger als im Fe₂(CO)₉ (252.3(1) pm) [13]. Der Vergleich der Kristallstrukturen von 1 und 2 mit analogen cyclopentadienylhaltigen Fe-Zweikernkomplexen (Tab. 4) zeigt ähnliche Werte in den Bindungslängen und -winkeln. Die (FeFe)-Abstände sind unabhängig von der cis- oder der trans-Konformation der Cpx-Liganden und liegen bei allen Verbindungen in der gleichen Größenordnung. Sie verlängern sich mit wachsendem sterischem Anspruch des Cyclopentadienyl-Liganden

TABELLE 2. Atomkoordinaten und äquivalente isotrope Auslenkungsparameter ($pm^2 \cdot 10^{-4}$) von [Cp'Fe(μ -CO)CO]₂ (1)

Atom	x	у	z	U _{eq} ^a	
Fe	0.03604(4)	0.47813(1)	0.61890(2)	0.02604(7)	
01	-0.2105(3)	0.3185(1)	0.5821(2)	0.0489(5)	
O2	0.3418(2)	0.4135(1)	0.4602(1)	0.0459(5)	
Cl	-0.1157(3)	0.3818(1)	0.5955(2)	0.0324(5)	
C2	0.1897(3)	0.4525(1)	0.4785(2)	0.0306(5)	
C3	0.2125(3)	0.4421(1)	0.8033(2)	0.0300(5)	
C4	0.0292(4)	0.4946(1)	0.8189(2)	0.0379(5)	
C5	0.0534(4)	0.5767(1)	0.7635(2)	0.0515(7)	
C6	0.2447(4)	0.5761(1)	0.7111(2)	0.0511(7)	
C7	0.3444(3)	0.4938(1)	0.7362(2)	0.0400(6)	
C8	0.2711(3)	0.3543(1)	0.8639(2)	0.0345(5)	
C9	0.3658(5)	0.2948(2)	0.7711(3)	0.0581(9)	
C10	0.4385(4)	0.3714(2)	0.9857(2)	0.0569(8)	
C 11	0.0777(4)	0.3094(2)	0.9067(2)	0.0487(7)	

^a $U_{eq} = 1/3 \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$

TABELLE 3. Atomkoordinaten und äquivalente isotrope Auslenkungsparameter ($pm^2 \cdot 10^{-4}$) von [Cp"Fe(μ -CO)CO]₂ (2)

Atom	x	У	z	U _{eq} ^a
Fe	0.1716(3)	-0.20586(3)	0.32030(3)	0.0388(2)
01	0.1288(2)	-0.1911(2)	0.1325(2)	0.092(1)
O2	0.1621(2)	- 0.4074(2)	0.2848(2)	0.074(1)
C1	0.1487(3)	- 0.1971(3)	0.2069(3)	0.059(1)
C2	0.2008(3)	-0.3362(3)	0.3012(2)	0.049(1)
C3	0.0453(2)	-0.2270(2)	0.3972(2)	0.043(1)
C4	0.0427(2)	- 0.1405(2)	0.3486(2)	0.043(1)
C5	0.1161(2)	-0.0792(2)	0.3784(2)	0.042(1)
C6	0.1665(2)	-0.1297(2)	0.4435(2)	0.041(1)
C7	0.1240(2)	0.2202(2)	0.4542(2)	0.043(1)
C8	-0.0302(3)	-0.3017(3)	0.3955(3)	0.062(1)
C9	0.0004(4)	-0.3913(3)	0.4438(3)	0.091(2)
C10	-0.0577(3)	-0.3261(3)	0.2993(3)	0.078(2)
C11	-0.1173(3)	-0.2608(3)	0.4425(4)	0.106(2)
C12	0.1261(3)	0.0240(2)	0.3533(3)	0.054(1)
C13	0.0370(3)	0.0742(3)	0.3884(3)	0.064(1)
C14	0.2125(3)	0.0674(3)	0.3965(3)	0.074(2)
C15	0.1306(4)	0.0364(3)	0.2521(3)	0.077(2)

 $\overline{U_{\rm eq}} = 1/3\sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$

von Cp über Cp', Cp" zu Cp*. Allerdings sollten hierfür mehr elektronische Faktoren eine Rolle spielen. Die in dieser Sequenz steigende Basizität der Cp*-Liganden erhöht die elektronische Abstoßung besetzter Orbitale zwischen den Eisenatomen. Erwartungsgemäß werden mit verlängerten (FeFe)-Bindungen auch längere (FeC)-Abstände zum verbrückenden CO-Liganden beobachtet. Die (FeC)-Bindungslänge zu den terminalen CO-Liganden sind in den *trans*-Komplexen stets etwas länger als in den entsprechenden *cis*-Derivaten.

Die cis-Konfiguration der Cp"-Gruppen in 2 ist ein

TABELLE 4.	Metall-Metall-,	Metall-Ligand-Abstände	(pm)	und
Diederwinkel () in $[Cp^{T}Fe(\mu - C)]$	CO)CO] ₂ -Komplexen		

			-			
$Cp^{x} = Cp^{x}$ -Anordn. =	Cp trans [8]	Cp cis [9]	Cp' trans ^a	Cp" cis ^a	Cp* trans [7]	-
Fe-Fe	253.4(2)	253.1(2)	255.0(1)	255.7(1)	256.0(1)	•
Fe-Cp ^x _{cent}	175.4(6)	174.2(5)	175.8(1)	176.1(1)	176.4(1)	
FeCO _{term.}	174.8(6)	173.0(7) 176.0(8)	176.2(2)	173.7(4)	175.3(3)	
Fe(μ-CO)	191.0(5)	191.8(7)	192.8(2)	192.1(4)	193.6(2)	
	191.8(5)	191.7(7)	193.4(2)	193.1(4)	192.2(2)	
Winkel ^b	180	164	180	157.1(2)	180	

^a Diese Arbeit. ^b Diederwinkel (°0 zwischen den Fe₂C_{verbr.}-Ebenen.

weiteres Beispiel für die Stabilisierung ungewöhnlicher Strukturen durch den Cp"-Liganden. So fanden wir im zu 2 isoelektronischen Komplex [Cp"Rh(CO)(μ -CO)₂Mn(CO)Cp] [11b] eine *cis*-Anordnung der Cyclopentadienyl-Liganden, während im Cp*-Derivat [Cp*Rh(CO)(μ -CO)₂Mn(CO)Cp] [14] die erwartete *trans*-Orientierung beobachtet wird. [Cp"Mo(CO)₂]₂ [10] ist ein *trans*-Komplex, wohingegen sich die Cp-Liganden in [CpMo(CO)₂]₂ [15] in der Linie der (MoMo)-Mehrfachbindung befinden.

Die Thermolyse von $Mn_2(CO)_{10}$ in Cp^*H bzw. von $Co_2(CO)_8$ mit Cp^*H in CH_2Cl_2 in Gegenwart von Cyclohexa-1,3-dien führt zur Bildung der Cyclopentadienyl-Carbonyl-Komplexe **3-6** (Gl. (1)). Zur Darstellung der entsprechenden Rh-Verbindungen 7 bzw. **8** erweist sich die KCl-Eliminierung ausgehend von dimeren Dicarbonyl-rhodium(I)chlorid als günstig (Gl. (2)). Das dimere Di-t-butylcyclopentadienyl-carbonylcobalt(Co=Co) **9** wird über die Thermolyse von **6** in Toluol unter CO-Verdrängung im Argonstrom erhal-

	TABELLE 5.	¹ H-NMR-Daten ^a	und CO-Valenzschwingungen ^b	der Verbindungen	$3-9 (R = (CH_3)_3 C bzw.$	H)
--	------------	---------------------------------------	--	------------------	----------------------------	----

2	2	
1/	3.	R
\sim	T	•••
	2	
5	4	

Verbindung	¹ H-NMR	¹ H-NMR δ (ppm)					ν(CO)
	CH ₃	2	3	4	5	(Hz)	(cm^{-1})
3	0.95	3.85	4.10	4.10	3.85	2.2	2026, 1946
4	0.97	4.55		4.08	4.08		2013, 1926
5	0.99	4.45 °	4.45 °	4.39 °	4.39 °	2.0	2026, 1966
6	1.05	4.69		4.41	4.41	1.9 ^d	2013, 1953
7	1.23	5.48	5.48	5.43	5.43		2043, 1979
8	1.20	5.36		5.23	5.23	1.9	2025, 1964, 1937sch
9	0.85	5.16		4.63	4.63	1.8	1780 °

^a In $CDCl_3$ (T = 301 K).

^b in n-Hexan (jeweils starke Absorbtionen, sch = Schulter).

° AA'BB'-Spinsystem.

 $^{\rm d}$ J(RhH) = 0.7 Hz.

^e μ-CO.

ten (Gl. (3)). Das Cp'-Analogon von 9 ist über diese Methode nicht zugänglich.

a m ((aa)

$$M_{2}(CO)_{m} + Cp^{x}H \xrightarrow{-CO} Cp^{x}M(CO)_{n} \qquad (1)$$

$$m = 8, 10$$

$$\begin{array}{c|cccc}
 & Cp^{x} & M & n \\
\hline
3 & Cp' & Mn & 3 \\
4 & Cp'' & Mn & 3 \\
5 & Cp' & Co & 2 \\
\hline
6 & Cp'' & Co & 2 \\
\hline
6 & Cp'' & Co & 2 \\
\hline
(7: Cp^{x} = Cp'; \\
8: Cp^{x} = Cp'') \\
\hline
(2) \\
Cp''Co(CO)_{2} & \frac{\Delta, \text{Toluol}}{-CO} & [Cp''Co(\mu-CO)]_{2} \\
\hline
(9)
\end{array}$$

Die über die Reaktionen 1-3 synthetisierten Komplexe sind gelbe (3), braune (5, 6) bzw. orangerote (7, 8) Flüssigkeiten. 4 wird als hell-gelbe, kristalline Substanz und 9 als grüne nadlige Verbindung isoliert. Bereits in unpolaren Lösungsmitteln wie n-Hexan zeigen alle Komplexe eine sehr gute Löslichkeit. Intensive Lichteinwirkung führt bei den Cobaltverbindungen 5 und 6 zur teilweisen Grünfärbung, da sich geringe Anteile des Dimeren 9 bzw. eines Cp'-Analogons bilden.

Die ¹H-NMR- und IR-Daten von 3-9 sind in Tab. 5 angeführt. Die Anzahl und die Lage der CO-Valenzschwingungen entsprechen den Erwartungen [16]. So werden für die C_{3v} -Symmetrie (Cp^x als Punktmassen betrachtet) der Verbindungen $[Cp^{x}Mn(CO)_{3}]$ 3 und 4 jeweils zwei Banden der Schwingungsrassen A1 und E beobachtet. Auch für die Komplexe des Typs $[Cp^*M(CO)_2]$ (5-8) werden in Übereinstimmung mit der formalen C_{2v} -Symmetrie im wesentlichen zwei

TABELLE 6. Ausgewählte Daten zur Röntgenkristallstrukturanalyse von 1 und 2

	1	2			
Summenformel	$C_{22}H_{26}O_{4}Fe_{7}$	$C_{30}H_{42}O_4Fe_2$			
$M(g mol^{-1})$	466.1	578.4			
Kristallsystem	monoklin	tetragonal			
Raumgruppe	$P2_1/c$	$P4_2/n$			
Gitterparameter: a (pm)	630.46(8)	1421.8(2)			
<i>b</i> (pm)	1540.4(2)				
c (pm)	1047.71(10)	1500.6(2)			
β (°)	99.269(8)				
$V(\text{pm}^3)$	$1004.2(2) \cdot 10^{6}$	3033.5(7) · 10 ⁶			
Z	2	4			
F(000)	484	1224			
$d_{\rm nort}$ (g cm ⁻³)	1.542	1.266			
μ (Mo K α) (cm ⁻¹)	14.7	9.8			
Kristallabmessungen (mm)	$0.19 \times 0.23 \times 0.38$	0.13 imes 0.38 imes 0.21			
Meßgerät	Stadi4-Vierkreisdiffraktometer der Fa. Stoe,				
	MoK α -Strahlung ($\lambda = 71.073$ pm); Graphitmonochromator				
Meßtemperatur (K)	293	293			
Meßbereich (°)	$4 \leq 2\theta \leq 60$	$4 \leq 2\theta \leq 45$			
gemessener Bereich des	$-8 \le h \le 8 - 8 \le h \le 8$	$0 \le h \le 15$			
reziproken Raumes	$0 \le k \le 21 -21 \le k \le 0$	$0 \le k \le 15$			
	$0 \le l \le 14 -14 \le l \le 0 \qquad \qquad 0 \le l \le 16$				
	(1. Satz) (2. Satz)				
Scan-Methode	ω/θ -Scan	ω/θ -Scan			
symmetrieunabhängige Reflexe	2860	1815			
beobachtete Reflexe	2318	1512			
$(F_o > 3.92\sigma(F_o))$					
Strukturlösung	Patterson-Methode: SHELXS-86 [18]				
Strukturverfeinerung	Methode der kleinsten Fehlerquadrate (Vollmatrix); SHELX-76 [19]				
	anisotrope Verfeinerung der Nicht-H-Atome;				
	geometrische Festlegung der Lagen der H-Atome, Anwendung des				
	Reitermodells im Falle der Cyclopentadienylring-H-Atome.				
	Behandlung der Methylgruppen als starre Gruppen				
Reflexanzahl/Parameter	17.0	8.4			
R/wR/S	0.031/0.037/1.74	0.033/0.040/1.85			
min./max. $\Delta \rho$ (e pm ⁻³ · 10 ⁻⁶) in	0.61 / - 0.29	0.17/-0.21			
abschl. Differenz-Fouriersynthese					

1. (00)

Banden (A₁ und B₂) detektiert. Für **3–8** treten alle Schwingungen im Bereich terminaler CO-Gruppen auf. Demgegenüber wird für **9** eine CO-Bande bei 1780 cm⁻¹ beobachtet, die verbrückenden CO-Liganden zuzuordnen ist.

3. Experimenteller Teil

Alle Arbeiten wurden unter Ausschluß von Luft und Feuchtigkeit unter Argon ausgeführt. Die Lösungsmittel wurden nach Standardmethoden getrocknet und unmittelbar vor der Verwendung destilliert.

Die Aufnahme der ¹H-NMR-Spektren erfolgte mit den Spektrometern AC 80 und WP 200 der Firma Bruker bei 80.13 bzw. 200.15 MHz, die der IR-Spektren mit einem IFS 25 der Firma Bruker. Die Ausgangsstoffe Cp'H bzw. Cp"H wurden nach modifizierten Literaturvorschriften dargestellt [17].

3.1. Röntgenkristallstrukturanalyse der Verbindungen 1 und 2

Die Kristalldaten von 1 und 2 sowie relevante experimentelle und rechentechnische Einzelheiten der beiden Strukturanalysen sind in Tab. 6 zusammengestellt.

Weitere Einzelheiten zur Röntgenkristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57153, der Autoren und des Zeitschriftenzitats angefordert werden.

3.2. Darstellung von $Cp^{*}Mn(CO)_{3}$ 3 und 4 ($Cp^{*} = Cp'$, Cp'') (vgl. auch [20])

6 g (15.4 mmol) $Mn_2(CO)_{10}$ werden mit 46.14 mmol Cp^xH für 15 h auf 180 ± 5°C erhitzt. Das im Falle von Cp^x = Cp' zurückbleibende Öl wird destilliert. Für Cp^x = Cp'' verbleibt ein leicht brauner Feststoff, der mit n-Hexan über eine Säule aus Kieselgel (Merck 60, Aktivitätsstufe II; 25 × 2.5 cm) gereinigt wird. Nach dem Einengen auf *ca*. 15 ml kristallisiert bei -78°C ein hellgelber Feststoff.

3: Ausbeute 6.1 g (75%). Kp₁ = 74°C. Analyse von 3: Gef.: C, 54.94; H, 4.59. C₁₂H₁₃O₃Mn ber.: C, 55.39; H, 5.04%; Mol.-Gew. 260.17.

4: Ausbeute 8.1 g (83%). Fp = 63°C. Analyse von 4: Gef.: C, 60.50; H, 6.34. $C_{16}H_{21}O_3Mn$ ber.: C, 60.76; H, 6.69%; Mol.-Gew. 316.28.

3.3. Darstellung von $Cp^{*}Co(CO)_{2}$ 5 und 6 ($Cp^{*} = Cp'$, Cp'') (vgl. auch [21])

7.4 g (21.6 mmol) $\text{Co}_2(\text{CO})_8$, 43.2 mmol Cp^{*}H und 3.1 ml (32.3 mmol) Cyclohexa-1,3-dien werden für 2 h

in 50 ml CH₂Cl₂ am Rückfluß erhitzt. Das Lösungsmittel und die flüchtigen Bestandteile werden im Vakuum entfernt und der ölige Rückstand entweder destilliert oder mit n-Hexan über eine Säule aus Al₂O₃ (basisch, Aktivitätsstufe II; 25×2.5 cm) gegeben. Nach dem Entfernen des Lösungsmittels verbleiben braune Öle.

5: Ausbeute 6.1 g (60%). $Kp_{0.5} = 70^{\circ}C$. Analyse von 5: Gef.: C, 55.60; H, 5.01. $C_{11}H_{13}O_2Co$ ber.: C, 55.94; H, 5.55%; Mol-Gew. 236.16.

6: Ausbeute 10.1 g (80%). $Kp_{0.1} = 53^{\circ}C$. Analyse von 6: Gef.: C, 61.29; H, 6.88. $C_{15}H_{21}O_2$, Co ber.: C, 61.64; H, 7.24%; Mol-Gew. 292.26.

3.4. Darstellung von $Cp^{*}Rh(CO)_{2}$ 7 und 8 ($Cp^{*} = Cp'$, Cp'')

Zu einer auf -45° C gekühlten Lösung aus 2 g 5.1 mmol [Rh(CO)₂Cl]₂ in 30 ml n-Pentan werden 10.2 mmol KCp^x hinzugegeben. Innerhalb von 2 h wird die Lösung unter Rühren und Lichtausschluß auf Raumtemperatur erwärmt und über eine Fritte, die mit 3 cm Kieselgur beschichtet ist, filtriert. Es wird mit 10 ml n-Pentan gewaschen. Nach dem Entfernen des Lösungsmittels wird der Rückstand im Feinvakuum destilliert. Man erhält orange-rote Flüssigkeiten.

7: Ausbeute 1.2 g (84%). $Kp_{0.1} = 65^{\circ}C$. Analyse von 7: Gef.: C, 46.73; H, 4.12. $C_{11}H_{13}O_2Rh$ ber.: C, 47.12; H, 4.67%; Mol.-Gew. 280.38.

8: Ausbeute 1.4 g (82%). $Kp_{0.1} = 80^{\circ}C$. Analyse von 8: Gef.: C, 53.10; H, 5.94. $C_{15}H_{21}O_2Rh$ ber.: C, 53.58; H, 6.29%; Mol-Gew. 336.24.

3.5. Darstellung von $[Cp''Co(\mu-CO)]_2$ (9)

6 g (20.5 mmol) 6 werden in 50 ml Toluol unter ständigem Durchleiten von Argon für 24 h am Rückfluß erhitzt. Von der gebildeten grünen Lösung wird zunächst Toluol und weiterhin unumgesetztes 6 im Hochvakuum abdestilliert. Der verbleibende grüne Rückstand wird in n-Hexan aufgenommen und über eine Säule aus Kieselgel (Merck 60, 25×2.5 cm) gereinigt. Die zweite, grüne Fraktion wird bis auf 5 ml im Vakuum eingeengt. Bei -78° C kristallisieren dunkelgrüne Kristalle von 9.

9: Ausbeute 0.96 g (20%). Zers. 68–70°C. Analyse von **9**: Gef.: C, 71.37; H, 8.84. $C_{28}H_{42}O_2CO_2$ ber.: C, 71.62; H, 9.02%; Mol-Gew. 469.56.

Dank

Diese Arbeit wurde vom Fonds der Chemischen Industrie und von der Deutschen Forschungsgemeinschaft gefördert. Der Degussa AG sei für die Überlassung von $RhCl_3 \cdot H_2O$ gedankt.

Literatur

- 1 Ch. Elschenbroich und A. Salzer, Organometallics, 2 Ed., VCH, Weinheim, S. 315 ff.
- 2 R.D. Adams und F.A. Cotton, J. Am. Chem. Soc., 95 (1973) 6589.
- 3 L.J. Farrugia und L. Mustoo, Organometallics, 11 (1992) 2941.
- 4 O.S. Mills und J.P. Nice, J. Organomet. Chem., 9 (1967) 339.
- 5 A. Steiner, H. Gornitzka, D. Stalke und F.T. Edelmann, J. Organomet. Chem., 431 (1992) C21.
- 6 N.A. Bailey, S.L. Radford, J.A. Sanderson, K. Tabatabaian, C. White und J.M. Worthington, J. Organomet. Chem., 154 (1978) 343.
- 7 R.G. Teller und J.M. Williams, Inorg. Chem., 19 (1980) 2770.
- 8 R.F. Bryan und P.T. Greene, J. Chem. Soc. (A), (1970) 3064.
 9 R.F. Bryan, P.T. Greene, M.J. Newlands und D.S. Field, J.
- Chem. Soc. (A), (1970) 3068. 10 M. Scheer, K. Schuster, K. Schenzel, E. Herrmann und P.G.
- Jones, Z. Anorg. Allg. Chem., 600 (1991) 109. 11 (a) M. Scheer, Ch. Troitzsch und P.G. Jones, Angew. Chem., 104
- (1992) 1395; Angew. Chem., Int. Ed. Engl., 31 (1992) 1377; (b) M.

Scheer, Ch. Troitzsch, U. Becker, J. Sieler und P.G. Jones, Publikation in Vorbereitung.

- 12 F.A. Cotton und J.M. Troup, J. Am. Chem. Soc., 96 (1974) 4155.
- 13 F.A. Cotton und J.M. Troup, J. Chem. Soc., Dalton Trans., (1974) 800.
- 14 M.L. Aldridge, M. Green, J.A.K. Howard, G.N. Pain, S.J. Porter, F.G.A. Stone und P. Woodward, J. Chem. Soc., Dalton Trans., (1982) 1333.
- 15 R.J. Klingler, W.M. Butler und M.D. Curtis, J. Am. Chem. Soc., 100 (1978) 5034.
- 16 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4. Ed., Wiley, New York, 1986, S. 395.
- 17 R. Riemschneider, Z. Naturforsch., Teil B, 18 (1963) 641.
- 18 G.M. Sheldrick, SHELXS-86, Program for the solution of crystal structures, University of Göttingen, BRD, 1986.
- 19 G.M. Sheldrick, SHELX-76, Program for crystal structure determination, University of Cambridge, England, 1976.
- 20 I. Bernal, J.D. Korb, W.A. Herrmann und R. Serrano, Chem. Ber., 117 (1984) 434.
- 21 M. Swarowsky, Dissertation, Universität Kaiserslautern, 1988.